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Abstract

Based on the difference between negative refraction and negative refractive index, the phase compensating effect was pro-
posed to distinguish negative refraction in left-handed materials (LHMs) and photonic crystals (PCs). With this effect, perfect
lens (PL) of LHM in which both propagating and evanescent waves contribute to the image could be well understood, which
is differed from superlens made of PCs. Furthermore, a 1@ieristructure consisted of ordinary materials and LHMs was
predicted to realize higher and wider bandgaps than the 1D conventional photonic crystal due to phase compensating effect.
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1. Introduction trodynamic properties of LHM such as inverse Snell
effect (negative refraction), reverse Doppler shift and
reverse Cerenkov radiation were proposed. Based on
LHM, a novel device, “perfect lens” (PL) was pro-
posed by Pendry in which light transmits to free space
without loss[8]. Recently, LHM in the microwave
ranges has been predicted by Pendry ef2ai4] and
realized by Smith et al[5-7] by constructing two-
dimensional arrays consisted of split-ring resonators
and wires, showing the negative refraction. On the
other hand, photonic crystals (PCs) have been used to
realize negative refraction which was proposed to be
~* Corresponding author. even to optical frequency regi¢d-11], showing great
E-mail address; yfchen@nju.edu.ciY.-F. Chen). potential applications.

An unusual material with both permittivity and per-
meability simultaneously negative was theoretically
investigated by Veselago in 19¢H. This type of ma-
terial is called left-handed material (LHM) because
when an electromagnetic (EM) plane wave propagate
in it, the direction of Poynting vectorE x H) will
be opposite to that of wavevectadr)(so thatk, E, H
form a left-handed set of vectors. Some unusual elec-
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2. Thedifference of negative refraction between and its refractive indexupc = kpc/ ko is positive. Due
LHMsand PCs to intense scattering, the direction of the group veloc-
ity or Poynting vectorSpc is divergent from that of
the wavevectokpc (Fig. 1(b)). Because of these two
In this Letter, we will attempt to clarify the differ-  different mechanisms, there are many different phe-
ence of negative refraction between LHMs and PCs nomena between LHMs and PCs. Here our focus on

(negative refraction in the lowest band). It is well negative refraction in PCs is the negative refraction in
known that the refractive index is responsible to the the lowest band of two-dimensional square PC.

phase velocity of EM wave and the refraction is related
to the group velocity. So a clear awareness should be
hold that negative refraction is not equal to negative 3 ppase compensating effect in LHMs
refractive indexFig. 1 shows the difference of neg-
ative refraction between LHMs and PCs. In LHMs,
there is a negative refractive indexyv = kLHm/ ko.

In this case, the important property is that the direc-

tion of phase velocity or wavevectryy is opposite
e . . _ 22 12 12  ,2.-2_ 12 12
to the direction of group velocity or Poynting vector k= = T/ @%c™% —ki —k§, %™ > ki +ky, (1)

Sthm (Fig. 1(a)), so it is the negative refractive index
that causes the negative refraction in LHMs. However,

the negative refraction in PCs is only resulted by in- , . /5 5 5 5 2.2 12,42
tense scattering near the Brillouin zone boundaries, ke =HiJkithy — %™, ot <kt k. ()

There are two EM wave forms, one is the propagat-
ing wave

the other is the evanescent wave
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Fig. 1. The difference of negative refractions between LHMs and PCs. (a) is the negative refraction in LHMSs, (b) is the negative refraction in
PCs, (c) is the wave propagation in OM—LHM systend £d) is the wave propagation in OM—PC system.
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Only could the wave propagate in a medium when

3

Consider a two-layer slab a8ig. 1(c) and (d),
one is consisted of ordinary material (OM) and LHM
(Fig. 1(c)) and the other is OM and PEi@. 1(d)), in

2.2 2 2
w ¢ > ki + k.
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ki/l.zdl + kl/_HMzd2
= +i\/k%x + ki, — n%wzc*2d1
- i\/kEHMx +khmy — nm@?c?d2. (10)

respectively. Because the signs of the indexes are re-

which the impedances of both regions are the same as,orse and the directions of the wavevectors in two

the one of free space&f = Z, = Zy), resulting in the
perfect transmission of EM wave in both materials.

In the OM-LHM case, the indexes of the two-layer
are

ni=\/e1i1, ALHM = —+/ELHM LLHM , 4)

respectively. EM waves enter the system from the left
surface of the first layer and exit from the right surface
of the second layer. In the first layer, the wavevectors
of two kinds of wavesk; andkj are parallel to the
direction of Poynting vectory;). The phase difference

in the first layer is11¢d;. That in propagating waves
is

kizdi =+ /n202c=2 — k2 — k3 di, (5)
and for evanescent waves, that is
/1zdl = +i\/k32_x + kfy — n%a)chzdl. (6)

In the second layer, the wavevectors of two kinds of
waves kLpm andk| ) are anti-parallel to the direc-
tion of Poynting vector§ nm). The phase difference
of the this layer isni nm £d2, for both propagating
waves and evanescent waves, which are

— 2 20-2 |2 2
kiLnmzd2 = _\/nLHMw €™ = kfumx — klnmyd2,
Y]
/ . 2 2 2 2.—2
kim d2 = _l\/kLHMx +kiumy — nium@ e d2,

8

respectively. Because the impedances of the two layers

are the same as the one of free spate=£ Z» = Zp),

there is no reflection at this system’s interfaces. There-

fore, the total phase differences of this system are
n1%¢d1 + nipm ¢dz for both propagating waves and
evanescent waves, which are

k1zd1 + kLnm:d2
= —i—\/n%a)zc*z — kJZ_x — kfydl

©)

2 2.2 _ 12 2
— /M@ — ke _kLHMydz’

layers are opposite, the total phase difference would
be smaller than the one of the first layer. Hence there
is a phase compensating effect in LHM. For propagat-
ing waves, LHM acts as a phase compensator in this
system12]. Itis clearly showed if both length and ab-
solute value of refractive index of two slabs in Kg)
are the same, the phase difference is zero. Meanwhile
for evanescent waves, LHM reduces the decay in am-
plitude and acts as an amplitude compensator due to
the imaginary part of evanescent waves in the wave
equation. The total effect is to compensate the ampli-
tude reduction in OM. Itis interesting that the evanes-
cent amplitude would be the same as the origin when
the length and absolute value of refractive index of the
first slab are the same as those of the second one in
Eq.(10). So evanescent waves also can be transmitted
and waves in LHM can surpass the image limitation
due phase compensating effect.

However, in the OM-PC case, the indexes of the
two-layer are

n1=./&€1M11,

respectively. The signs of the indexes and the direc-
tions of the wavevectors in two layers are the same, so
PCs cannot be a phase compensator for propagating
waves while the evanescent waves will decay expo-
nentially. But near the resonant frequency, it is also
possible to obtain transmission amplitudes for evanes-
cent waveg13].

npc = \/€pciLpC. (11)

4. A perfect lensbased on LHM

A perfect lens (PL) based on LHM is proposed in
Ref. [8] asFig. 2a), which is a slab of LHM with
epL = —1 andupL = —1. The refractive index is neg-
ative withnp. = —1 and the wavevector in PL is

npL

kpL = —ko = —ko. (12)
no



452

Due to negative refractions, there are two focusing im-
age, one in PLs interior and the other at PLs right
region. Another important character is that the im-
pedance of PL is equal to that of free space,

7 [Porew _ [mo
E0ELHM &0

13)

which assures there is no reflection at every interface.

This makes all propagating waves contribute to the im-
age. FronFig. 2(a), the light distances of EM waves in
free space and PL are the same and can be definkd as
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source at PLs left region. Due to the phase compen-
sating effect, every point in PL has an identical phase
with its symmetrical point in PLs left and right re-
gions. Both images in PL and PLs right region are
equal to the source at PLs left region. So based on
phase compensating effect, PLs mechanism could be
easily understood.

Recently imaging by another flat lens using neg-
ative refraction of PCs was realized in experiment
[15]. This type of lens called superlens that can ob-
tain subwavelength image is also discug4&. How-

For propagating waves, the phase difference betweenever, with positive refractive index, there is no phase
the object and the image k$.d + kp..d = 0, which compensating effect, so the same perfect image as its
means that there is no information difference between source might not be obtained. Here the ‘perfect’ means
the object and the image. On the other hand the phasenot only the image of evanescent waves but also the
difference of evanescent waves is atgal + kp .d = identity of the amplitude and phase.

i0, which means that the amplitude of evanescent

waves does not change when they propagate so that

PL could make use of all evanescent waves. Hence 5. 1D periodic structure consisted of OMs and

all information of the object, no matter propagating

LHMs

and evanescent waves, can be displayed in the image.

Fig. 2b) is the phase varying simulation with an infi-
nite PL that depicts the phase variation from a dipole

LHM

(@)

.,y i

Consider EM wave propagation in one-dimensional
(1D) system composed of periodic arrays of ordinary
materials and LHMsKig. 3(a@)), where we defind;
andd- as the length of the ordinary material slab and
LHM slab, respectively. Then the lattice constant or
the length of unit cell isl = d1 + d>.

Maxwell’'s equations for the 1D system can reduce
to the following wave equation in every slab:

IE(z,1)  e(x)u(z) 92E(z,1)

= 14
312 c2 912 ( )
By assuming the time dependence
E(z,t) = E(z) exp(—iwt), (15)
Eq.(14) can be written as
3°E 2
© L @uER =0, (16)
0z c

When the slabs are positioned periodically such that
e(x+d)=¢e(x)andu(x +d) = u(x), the solution of
equation has a similar form as Bloch wave

E(z+d) = explikd)E(z),

wherek is known as the crystal momentum, or Bloch

(17)

Fig. 2. The perfect lens. (a) is the schematic of the perfect lens and vector. In each three region, equation yields the usual

(b) is the phase variation in an infinite perfect lens system.

plane wave solutions with arbitrary coefficients, which
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we can describe as

regionl  Ej(z) = Aexpiikiz) + B exp(—ikiz),
regionll,  Ej(z) = Cexplikez) + D exp(—ikzz),
region lll, Ey (z) = A’ explikiz) + B  exp(—ik1z),

(18)

wherek; = "2 (n1 > 0) andkz = 22 (n2 < 0). Then
the condition of translational invariance expressed by

(@) | ]
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Fig. 3. A 1D periodic system comped of alternate layers. (a) is the
sketch of alternate layers of ordinary materials and LHMs; (b) the
dispersive relations of 1D periadistructure composed of alter-
nate layers of ordinary matersalnd LHMs (dashed curves) and
conventional photonic crystal (solid curves) wiilp| = 3|n1| and

do =2d7.
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equation requires that

Alexplikid) | . A
[ remid ] _ o[ 4] 9

With assuming the permeabilities of systemias=

—u2 = 1 for better comparison with the 1D conven-
tional photonic crystal in which the permeability is set
as 1[14], the refractive index becomes the reciprocal
of impendence so that the refractive index could be
considered instead of impenderj&é,17]to calculate

the bandstructure. Then, we have the boundary contin-
uous conditions

E\(z) = En(2)|;=—dy /2,

E{(2) = —E||(D)|:=—ay/2,
En(z) = En(2)lz=—dy/2s
E|/| (z2) = —E|/|| (Z)|z:d1/2~

From Eq.(20) we can relate the traveling-wave coef-
ficients of region | to those of region Ill by a matrix
equation:

(20)

A’ A
[B,}ZT[B], 21)
where
T11=exp(—ikid1)
sin(kad
x [cos(kzdl) —i(ﬂ + @)7( 2 1)],
no  n1 2

.(”1 nz) sin(kzdy)

T12 =l\— |/
n2  ni 2

Too = Tl*l (22)

Using the condition of translational invariance, we can
write Eq.(18)as

A explikid)
B’ exp(—ikid)

=[
X

= exp(ikd) [2} .

explikid)
0

explikid)
0

:
5]

0 A
exp—ikid) || B

0
exp(—ikid) } T [

(23)
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From Eq.(23), mean the same wave length but the longer one in OM—
exp(ikid) 0 LHM than in OM-OM which results in increasing_
{[ 0 exg—ikld)]T — exp(ikd)l} correspondent frequency. Therefore, compared with

a 1D OM-OM periodic structure, a 1D OM—LHM
% [A} -0 (24) one has higher and wider Bragg bandgaps with the
B ' same transmission. Based on this feature, by applying
T10 ) ) LHMs in 2D or 3D periodic structure, the full band
where/ = [o 1]' Then we can get the dispersion rela- 55 in them should be effectively enhanced and en-

tion between the frequeney and the crystal momen-  |arged. Meanwhile, the zerd-bandgap also could be
tumk expected when the wavelength is much longer than the

repeat distance of the structure including LHM].
cosk(dy + dzc)l J For a special case in which the absolute value of the
0 A@A 2wz index of this system is the same, = —n» = n, and

¢ ¢ length of the slabs ig1 = d2 = d/2. Then the disper-
+ }(E + Q) sin niwdy sin nowdz sion relation Eq(25) can be reduced to
2\nz - m ¢ ¢ nwd nwd
Inilodi  |nz|wds cosk(dy + do) = co$ — +sif — = 1. (27)
=CO0S cos 2c 2c

1 ¢ ¢ g J The frequency is not related to the crystal momen-
_(@ + @> gin rledy o Inolods tum k because the crystal momentum here is zero,
2\In2| ~ |n1] ¢ ¢ (25) which is obviously caused by phase compensating ef-

. o fect. So the frequenay is only related to the wavevec-

posed of periodic arrays of two different ordinary ma- ki cky el
terials withn > 0 andn}, > 0[14],i.e.,a 1D conven- = 1z dhl (28)
tional photonic crystal, ny  nz n

If n1 = —ny =1, this system can be regarded as the

cosk(dy + dp) juxtaposition of some identical PLs and free space, in
njwd]  nhod, which all waves will transmit. Therefore, through cal-

= C0S—— = CoS— culation in 1D structure, the same impedance with free

1(ny b\ . nhed] . nhod space and phase compen_sating effe_ct in LHM are the

~5 (”_/2 + ”_/1) sin—=—=sin—=—=. (26) key mechanisms of PL, which results in both propagat-

ing and evanescent waves caintite to the resolution
From Eqgs(25) and (27)we could see if the right  of the image.

terms of the equation is more than 1, there will exists

the stop bandgap, caused by the ratio of two differ-

ent refractive indexepu1|/|n2| or |n2|/|n1|. Fig. 3(b) 6. Conclusions
shows these two different dispersive relations de-
scribed by Eqs(25) and (27) Here the correspond- To summarize, the difference of the negative re-

ing refractive indexes have the same absolute value,fractive index and negative refraction was proposed
ny =n’ = |n1| and—nz = n’, = |n2|. Compared with to discuss the propagation of EM wave in LHMs and
1D conventional PC (solid), the periodic array includ- PCs. From the negative refractive index, phase com-
ing LHMs (dashed) has wider bandgaps and higher pensating effect for propagating wave and amplitude
frequencies. Based on phase compensating effect, itcompensating effect for evanescent wave were estab-
could be understood that the phase compensation inlished in LHMs. Due to these effects both propagat-
every LHM slab leads to the crystal momentéress ing and evanescent waves could propagate in LHMs
than that in 1D conventional PC and the lower crys- and contribute to the images which result in perfect
tal momentumk here is corresponding to higher fre- lens different from superlens realized by negative re-
qguency. In another word, the nominal saingoes not fraction of PCs. A 1D periodic structure consisted of
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OMs and LHMs was calculated to show higher and
wider bandgaps than 1D conventional PC with the
same transmission.
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